

November 3, 2022

RFID in Manufacturing 2022

RFIDJOURNAL VIRTUAL EVENTS

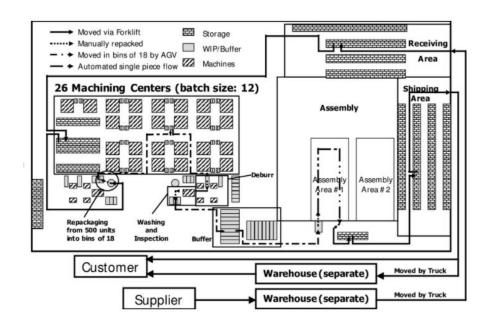
RFID in Manufacturing Sponsored by

RF#D JOURNAL LIVE!

Planning Your Manufacturing Line Deployment

Doug Harvel

Planning Your Manufacturing Line Deployment


- What are the reasons for implementing?
- How do we implement RFID in Manufacturing?
- Who should we include in the planning?
- Where is the best place to implement?
- Timeline for implementing

What are the reasons for implementing?

Implementing for customer compliance does NOT have an ROI

What do you manufacture?

Where to inject RFID in your Flow

Who Should be Involved

- Business Owners
- Plant stake holders
- IT department
- Business partners

How do we implement RFID in Manufacturing?

 Will you be using preprinted/encoded or print and encode at the plant

What method is being used for encoding?

- <u>GS1</u> standards dictate that for a 96-bit RFID tag, the serial number in an Electronic Product Code (EPC) can be no more than 38 bits and that, therefore, when read as a decimal numeral, it must be less than or equal to 274,877,906,943. In simple terms, this 12-digit decimal number can be shown as XXX,XXX,XXXX,XXX.
- In your serialization scheme, you can use the first two to four positions for the COO, with the first position designating who encoded the EPC. For example, you can make the first digit a 0 if the EPC was encoded internally, or a 1 if it was encoded by your RFID label vendor or service bureau.

Questions??

THANK YOU

RFIDJOURNAL VIRTUAL EVENTS

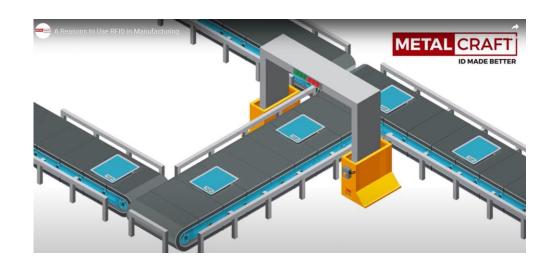
6 Reasons to Use RFID in Manufacturing

Colynn Black, RFID Business Development Director Metalcraft, Inc.

1. Improve accuracy and reliability in your

supply chain

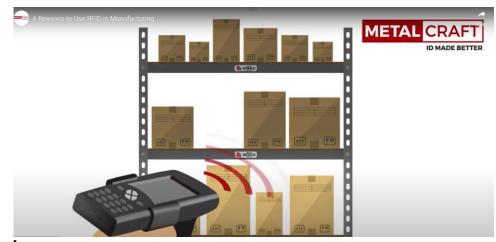
Impact of errors


- Missed shipments
- Deliveries shipped to wrong location
- Depleting inventory
- Lost product

2. Improve production line efficiency

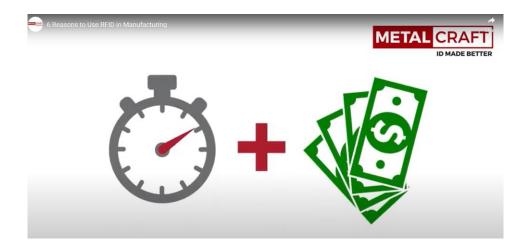
- Streamline and segment processes
- Free up resources (equipment/people)

3. Track equipment maintenance


- Increase uptime
- Extend equipment life
- Increase OTS

4. Increase accuracy of inventory management

- Provides real time inventory visibility
- Aids in production planning
- Monitor and prevent shrinkage
- Minimize labor costs
- Better inventory forecasting


5. Maximize asset utilization

- Ensure return of mobile assets
- Record valuable information about assets

- Improve overall ROI
 - Low barriers to entry
 - Infrastructure
 - Consumables
 - Increased benefits

Valley Chrome

 Background – leading manufacturer of chrome
 -plated aftermarket diesel truck parts like bumpers, cab panels, visors, etc.

 Opportunity/Challenge – managing production process producing over 300 bumpers/day

Valley Chrome

Solution – automating process
 with Universal RFID tags –
 performance, durability
 and cost-effectiveness

 Result – cut wasted time, improved efficiency of their processes and automated redundant task

Hawk Technology

Opportunity/Challenge –
 track parts from raw material
 through manufacturing and
 installation into the final
 product

Hawk Technology

Solution – Onsite Printable
 Universal Mini RFID Tags;
 survived rigorous tests
 (wash process, a paint process with oven curing and process)

process with oven curing and simulation of worstcase scenario in-field conditions

- Result - time savings on the line and in the field

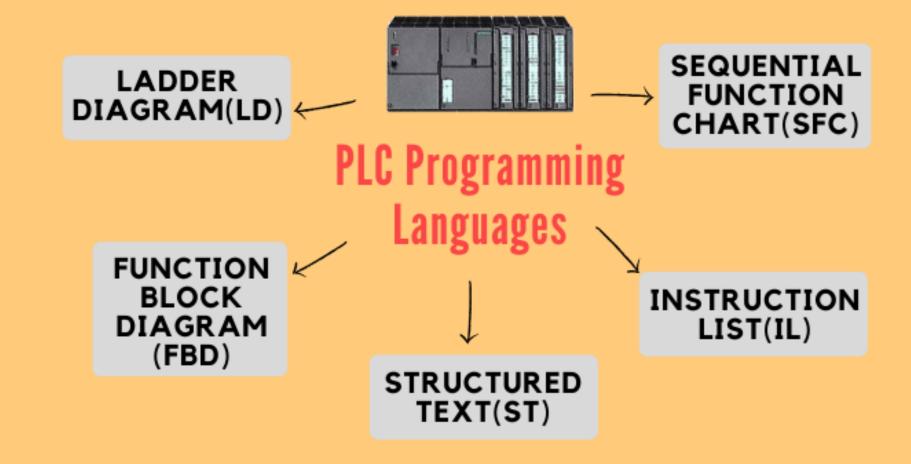
THANK YOU

November 3, 2022

RFID in Manufacturing 2022

Integrating RFID With PLCs and Manufacturing Systems

Kevin Berisso, Ph.D. Director



Source: IMC Research

Protocol	Company	Region
Sinec H1	Siemens	Europe
Ethernet/IP	Allen Bradley (Rockwell Automation)	US
CC-Link	Mitsubishi Electric	Asia
Modbus	Schneider Electric (Modicon)	All over

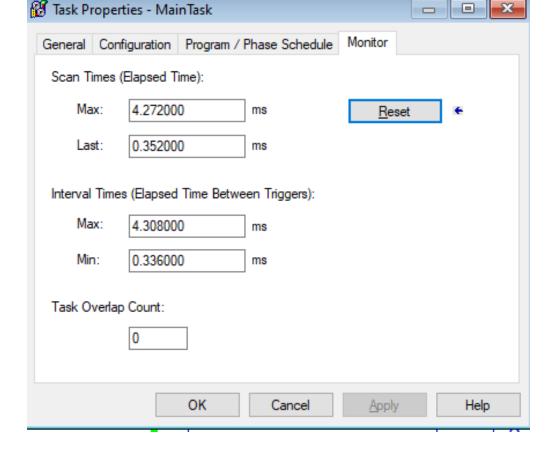
60	1.0	1000
100	1.6	600
200	3.3	300
400	6.7	150
800	10.0	75

16.7

100

Parts per Second

ms per Part


60

10

Parts per Minute

1000

6000

)						
Empty Project	128	33	54	1.894	1.790	0.065
GSV only	290	103	64	2.304	1.750	0.074
FFL (100) + GSV	316	102	65	2.230	1.787	0.074

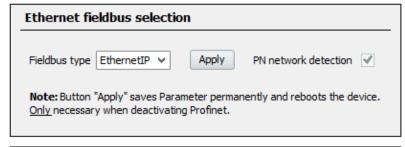
L306

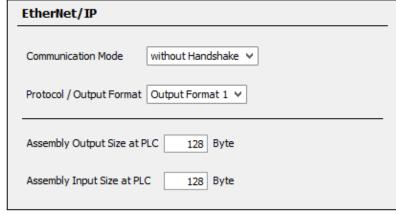
L23

Main Program (μs)

L24

L23


Logic


L306

Main Task (ms)

L24

SICK RFU610

TURCK

			_
		BUFFER[2]	-30
	±-RX_	BUFFER[3]	0
	±-RX_	BUFFER[4]	-112
	<u> </u>	BUFFER[5]	55
	<u> </u>	BUFFER[6]	-119
	<u>+</u> -RX_	BUFFER[7]	2
	±-RX	BUFFER[8]	2
- TBEN1	{}	FER[9]	24
-TBEN1.EnableIn	1	FFER[10]	8
-TBEN1.EnableOut	1	0	
-TBEN1.READ	0	-58	
-TBEN1.WRITE	0	-14	
-TBEN1.TAG_ID	0	24	
±-TBEN1.DOMAIN	1	-2	
+-TBEN1.LENGTH	12	3	
⊤-TBEN1.START_ADDRESS	1	0	
TBEN1.RESET	0	-45	
TBEN1.UHF_CONTINOUS_MODE	0	-17	
TBEN1.NODE_ADDRESS	0		
TBEN1.NODE_ADDRESS_TP	0		

Name

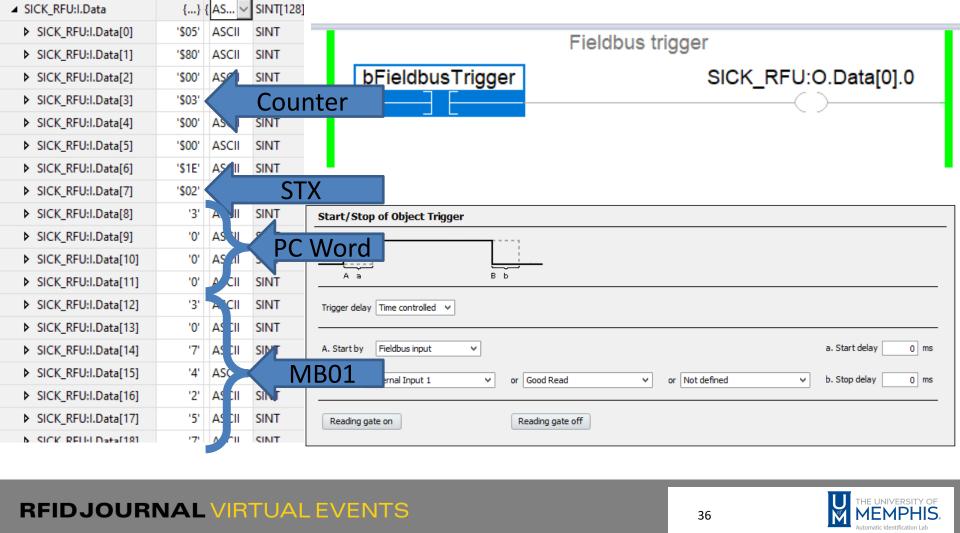
∃-RX_BUFFER

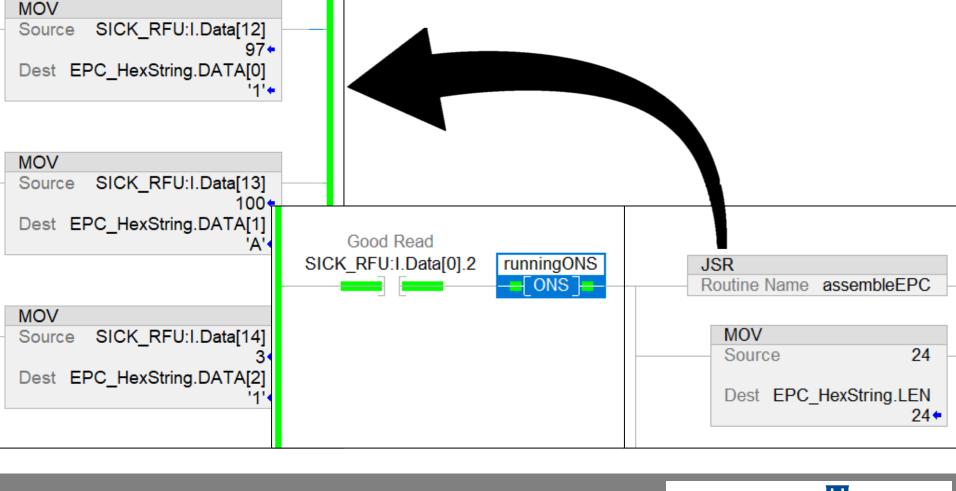
⊕ RX_BUFFER[0]

⊕-RX_BUFFER[1]

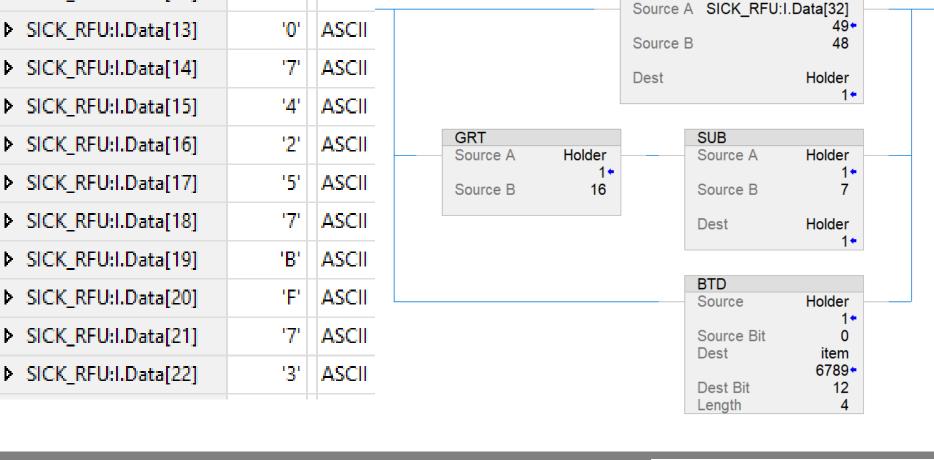
📰 🛆 | Value 🔸

24


₹. ZEBRA


Home **Status ▶** Operation Statistics **▶** Configure Reader Read Tags **▶** Communication **Date Time** IP Sec License Manager **Change Password GPIO** Applications **Profiles ▶** Firmware Commit/Discard **▶** System Log Diagnostics Shutdown Logout

User Application Page Existing Packages: List of Installed apps Start/Stop AutoStart Uninstall RFIDSample4App ▼ Uninstall Meta Data Package Name:RFIDSample4App Package Version: 1.0 Status: install user installed architecture: all Install New Package: Current Select package from the browser button Status: package: Browser Install



131

SICK RFU:I.Data[12]

ASCII

SUB

				AND
TagList[0].DATA[0]	16#30	Hex	SINT	Bitwise AND Source A RX_BUFFER[3]
TagList[0].DATA[1]	16#74	Hex	SINT	Source B 16#0000FFFF
TagList[0].DATA[2]	16#25	Hex	SINT	Dest testing2 242 ←
TagList[0].DATA[3]	16#7b	Hex	SINT	
TagList[0].DATA[4]	16#f7	Hex	SINT	Converts a 16 bit integer to a four
TagList[0].DATA[5]	16#36	Hex	SINT	character string representing the integer in a
TagList[0].DATA[6]	16#9a	Hex	SINT	hexadecimal radix IntToHexString
TagList[0].DATA[7]	16#80	Hex	SINT	Converts a 16 bit integer to a four IntToHexString myConversion Source testing2
TagList[0].DATA[8]	16#00	Hex	SINT	242 ← Destination testing
TagList[0].DATA[9]	16#00	Hex	SINT	CONCAT
TagList[0].DATA[10]	16#1a	Hex	SINT	String Concatenate Source A EPC_String
TagList[0].DATA[11]	16#85	Hex	SINT	'E2009037890202180800' + Source B testing 'F2' +
				Dest EPC_String

Logic	L23	L24	L306	L23	L24	L306
Empty Project	128	33	54	1.894	1.790	0.065
GSV only	290	103	64	2.304	1.750	0.074

65

72

Main Program (μs)

102

149

2.230

2.630

Main Task (ms)

1.787

1.757

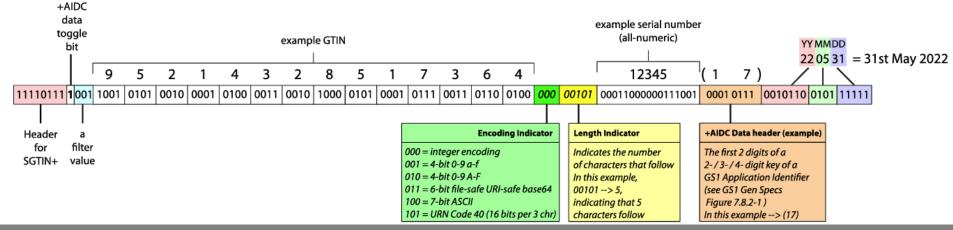
0.074

0.121

316

256

FFL (100) + GSV


Extract SN

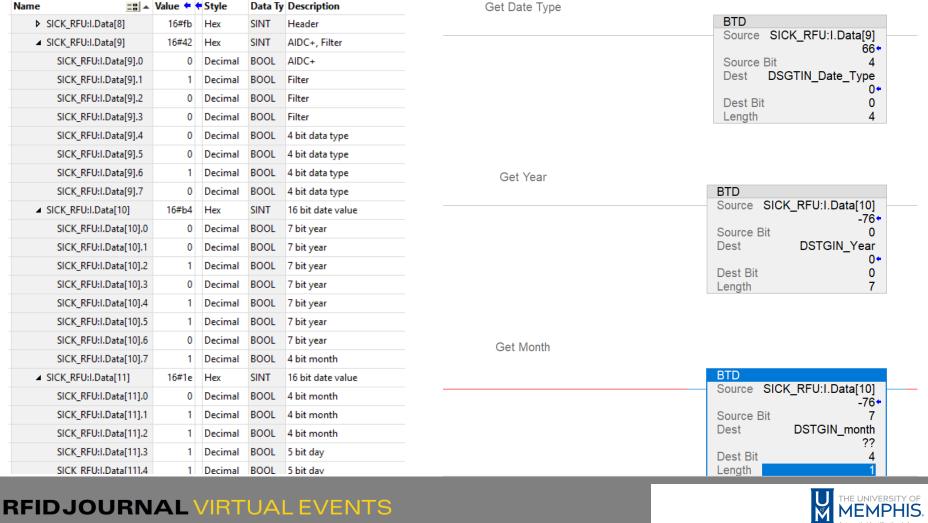
SGTIN+ DSGTIN+ SSCC+

EPC Tag Data Standard (TDS) 2.0

4813

4814

4815


14.6.1.4 DSGTIN+

The **DSGTIN+** coding scheme uses the following **coding** table.

Table 14-6 DSGTIN+ coding table

Scheme	DSGTIN+					
GS1 Digital Link URI syntax	https://id.gs1.org/01/{gtin}/21/{serial}					
Total Bits	Up to 236 bits					
Logical Segment	EPC Header	+Data Toggle	Filter	Date	GTIN	Serial Number
Corresponding GS1 AI				One of (11),(13),(15),(16), (17),(7006),(7007) as indicated	(01)	(21)
Logical Segment Bit Count	8	1	3	4 bit date type indicator + 16 bit date value	56	3 bit encoding indicator + 5 bit length indicator + up to 140 bits

Thank You

Kevin Berisso
University of Memphis
Automatic Identification
Lab
kberisso@memphis.edu

RFIDJOURNAL VIRTUAL EVENTS

RFID in Manufacturing Sponsored by

RFIDJOURNAL VIRTUAL EVENTS

